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Abstract. We consider a Zener double-well problem related to the magnetic bands in a 
superlanice Bloch operator. We give the precise asymptotic behaviour of the level splinings. 
This way we extend the Peierls substitution rule to an exponentially small term and furthermore, 
for the first time. we rigorously compute an exponentially small term in a Zener problem 

In this paper we consider the Schrodinger equation of an electron in a superlattice under a 
uniform magnetic field B 11 z perpendicular to the growth direction 3: of the superlattice (see, 
for a review, Altarelli 1988). By choosing the Landau gauge A = (0, Ex, 0) one has that 
the electron wavefunction associated to the energy ,I can be written as @(x) exp[ik,y+ik,z], 
where the function @ ( x )  is a solution of the onedimensional effective mass Schrodinger 
equation, 

Here, V ( x )  is the periodic potential of the superlattice with period L, 

where U, = eB/m*cfi is the cycloeonic frequency, m* is the effective mass and 1 = 
is the magnetic length (for sake of simplicity we shall assume h = 1). 

It is well known that for fixed weak magnetic field and relatively bounded V # 0 the 
Landau levels are changed into magnetic bands which show different behaviours depending 
on whether they are in the superlattice band or in the superlattice gap (Altarelli 1988 and 
the references therein). At low energy the xo-depending dispersion law is nearly flat. The 
width of the magnetic bands becomes appreciable near the top of the superlattice band and, 
furthermore, in the superlattice gap the dispersion law is locally quadratic with respect to 
xo and the gaps between the magnetic bands are very narrow. 

This picture can be easily understood by means of the crystal momentum representation 
(CMR) and the single-band approximation where Ha becomes a dual Bloch operator and xo 
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acts as a crystal momentum (Grecchi and Sacchetti 1989). More precisely, in the CMR HX, 
is formally defined on 1-1 = f B ~ l L 2 ( i 3 ,  dk) as 

V Grecchi and A Sacchetti 

H~ = (ioD + WX)' + E (3) 

where a vector @ of the domain can be written as e%(k) with U E C'(i3j and i3 is 
the Brillouin zone, i.e. the toms R/(Zn/L)  with representatives in (-n/L, n/L]. Here, 
D = diag(dk), E = diag(E.(k)), where E.&) is the nth superlattice band function of the 
Bloch operator pz + V ,  and X is the term which couples the bands: 

W 

(xa)n(k) CXn,m(k)am(k) a = (an)" E 31 (4) 
m=l 

where X,.,(k) = Pm,"(k) and each X,..(k) can be made constant by means of a suitable 
gauge choice of the nth Bloch function qn(x ,  k). 

The single band approximation of Hx, acts on 1-11 = L'(B, dk) and it is given by 

Therefore, it is a dual Bloch operator with &-quasi-periodic boundary conditions and the 
results quoted above on the magnetic bands follow from the asymptotic analysis for the 
Bloch problem with periodic potential €1 (see, for instance, Weinstein and Keller 1985 and 
1987 where they give the semi-classical behaviour of band and gap width). Furthermore, 
in such an approximation and for symmetric supedattices, i.e. V ( x )  = V ( - x ) ,  a new 
phenomenon is exhibited for energy levels in the first gap of the superlattice: the gap 
between the magnetic bands has exponentially small width for weak magnetic field. This 
result is not surprising because of the symmetry property (see, for instance, $50 in Landau 
and Lifsitz 1959) and one can perform a heuristic estimate of the gap width by means of 
a semi-classical double-well argument. For the energy in the superlattice gap, the Zener 
barrier simulates a barrier-tunnelling effect (see Buslaev 1987) so that the magnetic gap 
width is of the order of the square of the Zener hansmission amplitude through half a 
barrier: 

where E! = maxk,oEl(k) is the top of the first superlattice band, x(u) = IImk(w)l and 
k(u)  is the crystal momentum in the first gap. 

Let us stress that the barrier-tunnelling effect works for high fixed energy levels while 
for energy levels close to the ground state (i.e. close to the bottom of the first superlattice 
band) the width of the magnetic gaps is of the order of the magnetic field. This is the 
opposite of what happens for usual semi-classical double-well models where the tunnelling 
effect appears for lower energy. Because of these reasons, and since the semi-classical 
doublewell problem has received much attention recently for the presence of exponentially 
small terms in the eigenvalues behaviour (see, for instance, Helffer and Sjostrand 1984 and 
Caliceti et al 1993 where the Bore1 summability of the perturbation series is discussed), we 
think that our model itself is of interest. 

Our aim is to give the precise exponentially small gap width for weak magnetic field 
in the first superlattice gap. 
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Proposition. Let E be in the interval [ E ;  +S, E,h-S], for any fixed S z 0, and E # &I(z,), 
n E N. where zn ?r/L + ih, is a branch point of the nth band function. The width of the 
magnetic gap is given by 

, 

where 

dk 
T(o) = - 

0 ' J  0 2 -  

is the period of the classical motion on the torus I3 with potential El and mass 1/20', p ( E )  
is defined by 

x ( E )  
p ( E )  = J E  - El(z/L + ih)dh 

for E < &l(zl) and 

for &I (ZI) < E 

Remark. Let us stress that this exponentially small behaviour coincides with the one given 
in (6). Indeed, assuming E < €, (z l )  for simplicity, we have 

integrating by paas and taking h = El (n/L + ih) and w = E + Et - A. 

was rigorously estimated only by O(w2). 

different way) by Weinstein and Keller 1987 and M2rz 1992 for the d u d  Bloch operator 
HI we stress that the two results coincide even if the coupling term between the bands in 
not exponentially  small^ is o but it is 0(o2). 

This result extends a previous one (Grecchi and Sacchetti 1989) where the gap width 

By comparing our result for the complete operator HIa with the one obtained (in a:.. 

Here we give the proof of the above Proposition where we use the single band 
approximation, the Feshbach partition method and the stationary phase method. 

Let X = XI @ 'E', X2 = $g2LZ(B ,  dk), and let us consider Ifx, on 'H as 
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Hl is the single band approximation (9, 

Hz = (iwD + o&’ + wzWW’ + E  and T = [ioD + 02, W + W*]+ (8) 

where X = .% + W + W‘, and W is the bounded coupling term defined as 

a E 7h + Wa E 312, (Wa),(k)  = X..l(k)a(k) (9) 

and W* denotes the adjoint of W .  Being E hounded below one then immediately obtains 
that T is infinitesimally relatively bounded with respect to diag(Hl, Hz). We study the 
spectral problem for Hzo in the interval (-m, E:), where Et is the bottom of the second 
superlattice band, via the Feshbach operator on X1 given hy 

HF(E)  = - WzF(E) F(E)  = T~.z[ffz - E]-’T&l. (10) 

That is E e E: is an eigenvalue of Hx, if and only if A ( E )  is an eigenvalue of HF(E) 
such that A ( E )  = E (Combes et al  1981). Since T is infinitesimally relatively bounded 
with respect to diag (HI, H2), F(E) is a relatively bounded operator with respect to Hl. 
Thus it is natural to consider the spectral problem for the Feshbach operator (10) in the 
framework of the regular perturbation theory (Kat0 1984) setting &(E, ,9) = HI - ,9F(E) 
where ,9 is an auxiliary perturhative parameter. The unperturbed problem HF(E,O) = HI 
is the single-band approximation and, of course, HF(E,wZ) = &(E). Now, by arranging 
the xo-quasi-periodic conditions for the semi-classical solutions of the unperturbed problem 
and by using the regular perturbation theory one obtains the Onsager-type relation for the 
eigenvalues of the Feshbach operator &(E): 

A&) = 2(n iC xo/L)nw + O(oz) as o + 0 (11) 

for energy levels A in the superlattice gap; A c  is the classical action area. In (11) we 
consider the usual semi-classical limit: o + 0 and n + 00 such that 2nzo + A where 
A& - 6) > A > Ac(EI + 6) for some 8 > 0. From the analytic dependence on E 
in the Feshbach term F ( E )  there exists at least one EO e E; in a o-neighbourhood of 
AE1(A i 2 x ~ z o j L )  such that A(Eo) = Eo and it is an eigenvalue of Ha. Since A ( E )  is 
a monotonically decreasing function there exists exactly one eigenvalue of Hxo close to the 
value defined by (1 I). Let us stress that from (11) one immediately obtains a draft estimate 
of the magnetic gap width for energy in the superlattice gap (Grecchi and Sacchetti 1989). 
Indeed, by taking xo = 0 (or xg = L / 2 )  the two eigenvalues coincide up to O(oz). 

Fixing xo = 0 for sake of definiteness and since the operators HO and &(E)  are 
invariant under the inversion k + -k (indeed for symmetric superlattice potentials 
X,,,(k) = -Xn,m(-k) )  they can be restricted to 

L’,CB. w (or L ~ ( B ,  W )  (12) 

where D (N) denotes Dirichlet (Neumann) condition at the origin. In order to obtain the 
exponentially small behaviour of the gap width we go back to the x-representation where 
the splitting of the two eigenvalues ED.N of NO is given by the Herring formula (Willcinson 
and Hannay 1987): 
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Here @D,N denote the eigenvectors in the x-representation associated to the eigenvectors 
WD,N E 31 in the CMR representation via the formula (theorem x1II.98 in Reed and Simon 
1978) 

v, = (&, and (o, is the nth Bloch function normalized on Lz([O, L], dx/L). Now we 
compute the eigenvectors YD,N by means of the regular perturbation theory and after we 
evaluate (14) using the saddle-point method. 

The Dirichlet-Neumann unperturbed eigenvectors associated to the unperturbed 
Dirichlet-Neumann eigenvalues are given by +:,N = C1 (1 k U)+ where (Uu)(k) = a(-k) 
and $ ( k )  is a solution of the unperturbed equation [HI - E]+ = 0 which is given by the 
usual WKB approximation (where it works): 

The eigenvalues E = ED,N of Ho coincide, up to O(02), with the unperturbed ones and 

is a normalization constant. Now, for small o, from the regular perturbation theory on 
Li ,N ,  the eigenvectors of the full operator &(E)  are given by 

P = -- [&(E) - z1-1 dz W!,N 

+D,N = llP+:,N I1 21, ff 
where P is the eigenprojection and r is a clockwise circle surrounding E with radius cw, 
c > 0 suitable. The eigenvectors %,N of HO associated to E = ED,N are given by 

w 0 . N  = ( + D . N I ~ [ ~ ~ - - E ] - ' ~ ~ . ~ + D , N )  . (18) 

Since [P, (1 4~ U)]- = 0 and IIP$rg,NII = I + O(w), from (14) we have that 

where we have used the first resolvent identity for [%(E) - 21-' = [HI - w2F(E)  - zl-' 
and the eigenvalue equation Hl+!,N = E+:,.,. Q is defined as 

Q = Px1 + 04,zlHz - (20) 
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where Px, are the projectors on the subspace Xi, i = 1,2, and 

V Grecchi and A Sacchetti 

= CI [PI ( x .  k )  * PI ( x ,  4 4 1  + o w  . (21) 

From (19) one immediately obtains &D.N(O) = O(w”) by integrating by parts infinitely 
many times. Indeed, one has that 

~ D . N ( x )  = - (22) 

where 

Furthermore, from the saddle-point method the exponential behaviour follows. Let us 
consider the complex quasi-momentum plane with cuts directly linking the Kohn branch 
points of the first band zj and ?I. Let k be the saddle point: k = n / L  - 0 t- iX(E), 
O c x ( E )  c h ~ , a n d € ~ ( k ) = E i f E ~ ( z ~ ) c E , o r h = ~ n / L + O + i x ( E ) , O c ~ ( E ) c h ~ ,  
and &z(k) = E if El (z l )  = &(zI) > E (see Firsova 1979). We deform in the complex plane 
the interval of integration (-n/L, a/L], representing the torus f3, of (22) to apath y passing 
through k. There are two possible kinds of paths y depending on whether E c El (21) or not. 
In fact, if E > El(z1) the path. y should tum around ZI in both directions in order to have 
&(z)  = E in the second sheet of El .  While y should directly link k with the endpoints of 
(-n/L, n/L] without turning around zl if E < &I(zI); for sake of definiteness we discuss 
this case, the case E > E l ( z l )  follows in a similar way. A fuaher complication is given by 
the fact that, generically, there are infinitely many other Kohn branchpoints zn = n/L+ih,, 
for the band functions, with lim,, h, = 0 (Kohn 1959). However, if we avoid the energy 
values &(zn),  n = I ,  2 . .  . , N ,  the saddle point does not coincide with a Kohn branch point 
and the asymptotic expansion (21) holds for any k E y ;  N is such that E I ( Z N + I )  c E; + S. 
Therefore, the domain enclosed by y and (-n/L, n/Ll is free from singularities of f & k )  
and the Cauchy theorem and the saddle point method give 

where v = y n Bh(w), &(U) is a ball of centre k and radius o; endpoints of y do not 
give contributions in the saddle-point method because the function f ( k , x ) @ ( k )  in (22) is 
periodic for k in the toms B.  Since k is a complex turning point for [HI - E]$ = 0 the 
WKB approximation (23) fails for k in B&) and one has 

$(k) - CzAi [il.$(k)l’~’~-”~(k - k)] (25) 

where Ai is the Airy function (Abmowitz and Stegun 1972) and 
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is obtained by matching the two asymptotic expansion (23) and (25) on the vertical direction 
passing through k. Therefore, one obtains 

since f R  Ai(t)dt = 1 + O(R-’I4). Finally, one has 

A E  = K(k)oexp [ -- gx(E) d m d h ]  (1 + o ( o ~ / ~ ) )  as o + 0 (28) 

where W = ptv{ - vlv; is the constant Wronskian of 91 and TI; therefore 

from the group velocity formula (see, for instance, formula A1.5.1 in Jones 1973). Hence, 
K(k) = 4 [JB dk/,/=-’ and so we have obtained the exponential behaviour for 
weak magnetic field and proved the proposition. 
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